
phosphorus

Stable	Atomic mass*	Mole
isotope		fraction
³¹ P	30.973 761 63	1.0000

^{*} Atomic mass given in unified atomic mass units, u.

Half-life of redioactive isotope

Important applications of stable and/or radioactive isotopes

Isotopes in medicine

- 1) ³²Phosphorus can be used as a therapeutic radiopharmaceutical. By injecting a patient with ³²P, as an orthophosphate or polyphosphate, osteoblastic-reactive bone, tumors, and other cells are targeted and the beta-emission from the radioactive isotope can lead to cancerous-cell killing, as well as pain reduction. For example, Polycythemia vera is the condition of having excess red blood cells in the bone marrow and ³²P can be used to treat this condition by reducing the number of red blood cells, however, there is no cure for this condition.
- 2) ³²P has also been used as the radioactive target in brachytherapy of solid tumors using a ³²P labeled Bio-silicone product. Tested on humans with inoperable intra-abdominal hepatocellular carcinoma, the ³²P offered a localized radiation (beta emission) to tumors and has shown some success in tumor reduction.

Isotopes in tracer studies

- 1) ³²P is a radioactive isotope of phosphorus used to help comprehend the biological and chemical processes that occur in plants. It is chemically identical to other isotopes of phosphorous and can be substituted in biological and chemical reactions. For example, a phosphate solution containing ³²P, which has the identical behavior of non-radioactive ³¹P, can be inserted into the roots of a plant and then its movement tracked throughout the plant with use of a Geiger counter. This movement detection study helps scientists to better understand how the plant uses phosphorous in order to reproduce and grow.
- 2) On more of a molecular level, ³²P can substitute ³¹P in nucleotides of DNA or RNA. Radioactive probes can be created to help identify the presence, absence and quantity of genes in a system.
- 3) ³²P isotopes can be used to detect tumor locations within the body. The isotope, ³²P is a radioactive isotope that emits beta particles. When this isotope is attached to antibodies specific to cancerous tumors, it can be imaged in vivo by scintigraphy. This is useful for imaging cancer sites and for treatment monitoring of oncologic patients.
- 4) Depending on the type of ³²P labeled compound, when ingested or injected in the body, specific body parts (blood, tumors, joints, or bones), can be targeted for visualization and imaged using a scintillation camera.
- 5) ³²P has been added to tires by Goodrich labs to help determine the location and depth of tire wear in performance tests.
- 6) ³²P has been used as a tracer to help determine phosphorus nutrient cycling in eutrophied lakes. In one experiment phosphoric acid labeled with ³²P was added to a lake that had been experimentally eutrophied. ³²P was measured in microphytoplankton, phytoplankton and zooplankton and the amount of incorporated ³²P determined.
- 7) ³²P and ³³P have been used to better understand phosphorus dynamics in the environment at the sediment surface level. Phosphorus is a necessary nutrient for many biota and knowing the bioavailability and sorption of this nutrient to particles in soil is very important to helping us understand the health of our ecosystems. By labeling organic and inorganic phosphorus substrates (anions) in a sediment system, these radioactive elements can be extracted and measured.

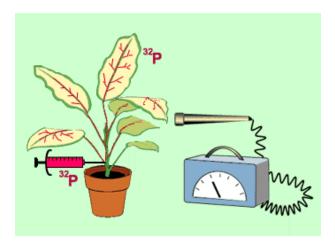


Figure 1: ³²P addition to plants and detection using a Geiger counter.